Function of Adipose Tissue In Human Body

The role of white adipose tissue (WAT) in storing and releasing lipids for oxidation by skeletal muscle and other tissues became so firmly established decades ago that a persistent lack of interest hindered the study of the extraordinarily dynamic behavior of adipocytes. However, disentangling the neuroendocrine systems that regulate energy homeostasis and adiposity has jumped to a first-priority challenge, with the recognition of obesity as one of the major public health problems. Strictly speaking, obesity is not defined as an excess of body weight but as an increased adipose tissue accretion, to the extent that health may be adversely affected.

Therefore, in the last decades, adipose tissue has become the research focus of biomedical scientists for epidemiological, pathophysiological, and molecular reasons. Although the primary role of adipocytes is to store triglycerides during periods of caloric excess and to mobilize this reserve when expenditure exceeds intake, it is now widely recognized that adipose tissue lies at the heart of a complex network that participates in the regulation of a variety of quite diverse biological functions.varying greatly among species. Adipocytes differentiate from stellate or fusiform precursor cells of mesenchymal origin.

There are two processes of adipose tissue formation. In the primary fat formation, which takes place relatively early (in human fetuses the first traces of a fat organ are detectable between the 14th and 16th weeks of prenatal life), gland-like aggregations of epitheloid precursor cells, called lipoblasts or preadipocytes, are laid down in specific locations and accumulate multiple lipid droplets becoming brown adipocytes. The secondary fat formation takes place later in fetal life (after the 23rd week of gestation) as well as in the early postnatal period, whereby the differentiation of other fusiform precursor cells that accumulate lipid to ultimately coalesce into a single large drop per cell leads to the dissemination of fat depots formed by unilocular white adipocytes in many areas of connective tissue. Adipose tissue may be partitioned by connective tissue septa into lobules.

The number of fat lobules remains constant, while in the subsequent developmental phases the lobules continuously increase in size. At the sites of early fat development, a multilocular morphology of adipocytes predominates, reflecting the early developmental stage. Microscopic studies have shown that the second trimester may be a critical period for the development of obesity in later life. At the beginning of the third trimester, adipocytes are present in the main fat depots but are still relatively small. During embryonic development it is important to emphasize the temporospacial tight coordination of angiogenesis with the formation of fat cell clusters. At birth, body fat has been reported to adipose cells. In this case, adipocytes may be four times their normal size.

If the positive energy balance is maintained, a hyperplasic or hypercellular obesity characterized by a greater than normal number of cells is developed. Recent observations regarding the occurrence of apoptosis in WAT have changed the traditional belief that acquisition of fat cells is irreversible. The adipose lineage originates from multipotent mesenchymal stem cells that develop into adipoblasts (Figure 2). Commitment of these adipoblasts gives rise to preadipose cells (preadipocytes), which are cells that have expressed early but not late markers and have yet to accumulate triacylglycerol stores (Figure 3). Multipotent stem cells and adipoblasts, which are found during embryonic development, are still present postnatally.

The relationship between brown and white fat during development has not been completely solved. Brown adipocytes can be detected among all white fat depots in variable amounts depending on species, localization, and environmental temperature. The transformation of characteristic brown adipocytes into white fat cells can take place rapidly in numerous species and depots during postnatal development The morphological and functional changes that take place in the course of adipogenesis represent a shift in transcription factor expression and activity leading from a primitive, multipotent state to a final phenotype characterized by alterations in cell shape and lipid accumulation. Various redundant signaling pathways and transcription factors directly influence fat cell development by converging in the upregulation of PPAR, which embodies a common and essential regulator of adipogenesis as well as of adipocyte hypertrophy.

Among the broad panoply of transcription factors, C/EBPs and the basic helixloop-helix family (ADD1/SREBP-1c) also stand out together with their link with the existing nutritional status. The transcriptional repression of adipogenesis includes both active and passive mechanisms. The former directly interferes with the transcriptional machinery, while the latter is based on the binding of negative regulators to yield inactive forms of known activators. Hormones, cytokines, growth factors, and nutrients influence the dynamic changes related to adipose tissue mass as well as its pattern of distribution (Figure 4).

The responsiveness of fat cells to neurohumoral signals may vary according to peculiarities in the adipose lineage stage at the moment of exposure. Moreover, the simultaneous presence of some adipogenic factors at specific threshold concentrations may be a necessary requirement to trigger terminal differentiation. Structure Adipose tissue is a special loose connective tissue dominated by adipocytes.

The name of these cells is based on the presence of a large lipid droplet with ‘adipo’ derived from the Latin adeps meaning ‘pertaining to fat.’ In adipose tissue, fat cells are individually held in place by delicate reticular fibers clustering in lobular masses bounded by fibrous septa surrounded by a rich capillary network. In adults, adipocytes may comprise around 90% of adipose mass accounting only for roughly 25% of the total cell population.

Thus, adipose tissue itself is composed not only of adipocytes, but also other cell types called the stroma-vascular fraction, comprising blood cells, endothelial cells, pericytes, and adipose precursor cells among others these account for the remaining 75% of the total cell population, representing a wide range of targets for extensive autocrine-paracrine cross-talk.

Function Although many cell types contain small reserves of carbohydrate and lipid, the adipose tissue is the body’s most capacious energy reservoir. Because of the high energy content per unit weight of fat as well as its hydrophobicity, the storage of energy in the form of triglycerides is a highly efficient biochemical phenomenon (1 g of adipose tissue contains around 800 mg triacylglycerol and only about 100 mg of water).

It represents quantitatively the most variable component of the organism, ranging from a few per cent of body weight in top athletes to more than half of the total body weight in severely obese patients. The normal range is about 10–20% body fat for males and around 20–30% for females, accounting approximately for a 2-month energy reserve. During pregnancy most species accrue additional reserves of adipose tissue to help support the development of the fetus and to further facilitate the lactation period.

Energy balance regulation is an extremely complex process composed of multiple interacting homeostatic and behavioral pathways aimed at maintaining constant energy stores. It is now evident that body weight control is achieved through highly orchestrated interactions between nutrient selection, organoleptic influences, and neuroendocrine responses to diet as well as being influenced by genetic and environmental factors. The concept that circulating signals generated in proportion to body fat stores influence appetite and energy expenditure in a coordinated manner to regulate body weight was proposed almost 50 years ago.

According to this model, changes in energy balance sufficient to alter body fat stores are signaled via one or more circulating factors acting in the brain to elicit compensatory changes in order to match energy intake to energy expenditure. This was formulated as the ‘lipostatic theory’ assuming that as adipose tissue mass enlarges, a factor that acts as a sensing hormone or ‘lipostat’ in a negative feedback control from adipose tissue to hypothalamic receptors informs the brain about the abundance of body fat, thereby allowing feeding behavior, metabolism, and endocrine physiology to be coupled to the nutritional state of the organism.

The existing body of evidence gathered in the last decades through targeted expression or knockout of specific genes involved in different steps of the pathways controlling food intake, body weight, adiposity, or fat distribution has clearly contributed to unraveling the underlying mechanisms of energy homeostasis. The findings have fostered the notion of a far more complex system than previously thought, involving the integration of a plethora of factors. The identification of adipose tissue as a multifunctional organ as opposed to a passive organ for the storage of excess energy in the form of fat has been brought about by the emerging body of evidence gathered during the last few decades.

This pleiotropic nature is based on the ability of fat cells to secrete a large number of hormones, growth factors, enzymes, cytokines, complement factors, and matrix proteins, collectively termed adipokines or adipocytokines (Table 2, Figure 12), at the same time as expressing receptors for most of these factors (Table 3), which warrants extensive cross-talk at a local and systemic level in response to specific external stimuli or metabolic changes. The vast majority of adipocyte-derived factors have been shown to be dysregulated in alterations accompanied by changes in adipose tissue mass such as overfeeding and lipodystrophy, thus providing evidence for their implication in the etiopathology and comorbidities asssociated with obesity and cachexia.

Leave a Comment